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Abstract—A class of novel freuuency-selective devices. called manner. each plate can be rigorously described in terms of a well-

stacked-crystal filters, is discussed in terms of a microwave net-
work approach that leads to a systematic procedure for their analysis

and design. These “devices consist of two or more crystal plates that
are stacked together, with thin electrodes being provided between
some or all of the adjacent interfaces for the purpose of translating
mechanical properties into electrical signals via piezoelectric

coupling. In such a configuration, the electromechanical coupling

that occurs at the plate surfaces produces selective interactions be-

tween the elastic modes in each crystal plate, as well as between

these modes and all of the modes in the other plates included in a
stack. A judicious combination of materials and dimensions can

therefore provide a very wide range of desired filtering charac-
teristics.

For stacks with thin plates, only three thickness modes appear in
each plate and they can be described in terms of three transmission
limes; their coupling at the plate surfaces is then expressible in

terms of ideal transformers that represent the mechanical junction

between two adjacent plates. The interface electrodes appear as a
set of terminals, to which are attached capacitors and another set

of ideal transformers that represent the piezoelectric drive. In this
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detined network that serves as a building block. A stack consisting
of any number of plates can therefore be regarded as the comection
of an appropriate number of such building blocks, thus reducing a
complicated mathematical problem to a systematic representation
that can readily be handled by conventional techniques. A simple

example of a two-layer quartz device operating on these principles

is given. The simulated behavior obtained from the exact equivalent
network discloses that wide-band filters may be designed. Construc-

tion of such devices can be expected to yield robust, miniature

filters of high performance possessing a large diversity of de-

sired characteristics.

I. INTRODUCTION

P IEZOELECTRIC crystal plates that vibrate mechan-

ically in response to an applied voltage have long been

used as compact, rugged, very stable and low-loss one-

port resonant elements in frequency-selective circuits.

In this paper, a method is given for representing and

analyzing a new class of bulk-wave crystal filters, which

are formed by stacking two or more crystal plates with

electrodes between them [1]. One can thus expect to

achieve filters that take advantage of all the desirable

properties of crystal plates and to exploit the diversit y ob-

tained by joining plates made of different materials. A

principal contribution of this study is the development of

new . equivalent networks, which make possible the
systematic investigation of these stackeckrystal filters.

The traditional crystal filter consists of an assembly

of individual crystal resonators that are wired into an
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appropriate network [2]. Coupling among the resonators

takes place entirely electrically, this being the source of

some of the limitations on these devices. A more recent

development is the monolithic filter [3], in which two

or more pairs of electrodes are placed laterally adj scent

to each other on a single crystal plate to permit acoustic

coupling between resonators. In general, these filters

permit a size reduction over discrete-resonator units, but

the operating characteristics are not greatly different,

and a restriction to relatively narrow bandwidths at

VHF frequencies is a drawback common to both types of

crystal filters. Also because the plate thickness must be

of the order of wavelength, the lateral size required for

monolithic filters makes them fragile and difficult to

fabricate for frequencies in the range of 100 MHz and

higher. Since the stacked-crystal filters are built by

vertical stacking rather than lateral extension, they do

not suffer from this limitation.

The realization of stacked-crystal filters requires the

exploitation of multimode coupling which occurs at the

interfaces between adjacent plates. For a single resonant

element, the analysis is relatively simple and has been

carried out [4], [5]. However, as no analysis has been

available for the much more complex case of stacked

crystals, a principal portion of the present paper is

devoted to developing a general approach for the analysis

of these devices. This approach is based on a representa-

tion of stacked crystals by exact equivalent networks

that permit a systematic analysis of the effects due to

interface coupling between all of the thickness modes in

the plate. In these networks, each of the three plane-

wave modes in a single-layer material is represented in the

bulk by an acoustic transmission line, which is physically

equal in length to the thickness of that layer; in general,

the three transmission lines possess unequal characteris-

tics. At the interface between any two layers, the per-

tinent six transmission lines (three from each side) are

interconnected by transformer elements. Incorporation of

the piezoelectric drive mechanism requires an additional

simple network, which is connected only at the trans-

former terminals, thus providing further coupling be-

tween the transmission lines.

Equivalent-circuit representations have long been used

to characterize the behavior of piezoelectric vibrators and

transducers [6]–[8]. However, these have invariably

been single-mode representations which are inadequate
to deal with the multimode situation used in the stacked-

crystal filter realization.1 The networks presented here

overcome this difficulty and have the additional advantage

of being pictorial as well as schematic; they thus account

in a simple, physically satisfying manner, for the spatial

propagation of the three plate waves and for their

I A paper by OnoeL Trans. Inst. Elec. Eng. (Japan), vol. 55A, pp.
239-244, May 1972, m Japanese, was brought to our attention by a
reviewer. This paper has a multimode representation for the plate
but contains lumped elements with transcendental functional
variation.

coupling at the plate boundaries, via both the piezoelectric

effect and the mechanical boundary conditions.

More recently, a transmission-line representation for the

propagation of guided acoustic” waves, including plane

waves, has been developed [9]. In addition, a description

of plane-wave scattering at interfaces has been formulated

in terms of the coupling of transmission lines through

lumped-element networks [10]. While these transmission-

line and network representations are limited to the case

of isotropic media, the transmission-line representation

is general in that it applies to acoustic waveguides of

arbitrary cross section, and both transmission lines and

networks are applicable to plane waves obliquely incident

on an interface. The reflection symmetry of’ the g’uide

region in the plane normal to the direction of propagation

(or parallel to the interface in the case of plane waves),

resulting from the restriction to isotropic media, provides

a basis for associating each acoustic-field component with

either the voltage or current.

The transmission lines and networks discussed here

apply to piezoelectric materials, which are therefore

anisotropic, but they are restricted to plane waves whose

direction of propagation is normal to the interfaces.

Because, in general, anisotropic media are not reflection

symmetric in planes normal to’the direction of propagation,

the basis for associating acoustic-field components with

voltage or current differs somewhat from that used for

isotropic rnedla [9], [10]. As a result, the transmission-

line and network representations for the two cases differ

in certain details, although both are entirely self-con-

sistent and exact within the context for which they have

been developed. The representation given here is also

consistent with previously developed networks for piezo-

electric resonators and transducers.
A key feature of the network representation developed

here is that the equivalent circuit for a stacked structure

is built up by the simple interconnection of basic blocks

of identical form, with each block accounting for the be-

havior of one plate. When an actual structure is to be

analyzed, it is therefore no longer necessary to perform an

ab initio mathematical analysis. Instead, the complete

characterizing circuit can be put down by inspection, thus

reducing the problem to one of network thecry. Similarly,

the synthesis of a structure that realizes given performance

specifications reduces, via the circuit analog, to a problem

in the domain of networks. Since, for practical applica-

tions, the stacked-crystal device is part of a larger, com-

pletely electrical circuit, the electrical representation of

the mechanical portion provides a uniformity that lends

itself to optimization of the overall electromechanical

system. Because the equivalent networks are a pictorial

description of the mode interactions, they can greatly aid

the ‘designer in selecting interactions that produce a

desired filter response. The network description also gives

immediate access to computer-aided circuit-design pro-

grams, which greatly facilitates the analysis.

In the following sections, the equations governing
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acoustic-wave propagation in unbounded piezoelectric

crystals are cast into transmission-line form, after which

the network realization for the plate is derived, and the

normal-coordinate impedance matrix is given. The

problem of stacking plates requires a boundary network

to account for the mechanical coupling between the

transmission-line networks representing each plate. The

general coupling network is derived and applied to the

practical case of welded contact between pl@e:. The

paper concludes with an illustrative example in which a

computer simulation is used to generate the filter-response

function for a simple two-layer structure composed of

quartz plates of varying relative orientation. This example

demonstrates the application of these networks and con-

cepts to the development of actual devices, and illustrates

the systematic, efficient, and practical aspects of the

network characterization developed in the present work.

II. EQUIVALENT NETWORK FOQ A SINGLE PLATE IN

NORMAL COORDINATES

We shall first obtain a representation for the bulk waves

within a plate and, at the same time, account for the

piezoelectric effect within this region. However, the

mechanical restrictions imposed by the boundary con-

ditions will have to be separately accounted for as an

additional effect; this will be discussed in Section III.

A. Acoustic Plane Waves in Unbounded Piezoelectric Media

To establish notation, and also to introduce trans-

mission-line concepts in the present context, we shall

briefly consider the pertinent equations for the descrip-

tion of plane acoustic waves in a homogeneous, linear,

but arbitrarily anisotropic, piezoelectric substance. The

three modes, which are allowed for any assumed propaga-

tion direction, have motions that are coupled by the

elastic and piezoelectric constants; a normal coordinate

transformation uncouples them, and is shown to provide

a set of first-order differential equations which are to be

compared with the Heaviside equations for a transmission

line.

Notation and definitions regarding crystal axial con-

ventions, orientation, and constitutive relations agree,

for the most pm-t, with the 1949 Standards on Piezoelectric

Crystals [11]. In agreement with usual tensor notation

[4], a. subscripted index preceded by a comma indicates

differentiation with respect to the space coordinate

having that subscript, and the summation convention

for repeated indices is employed.

We use, T, u, S, D, and E to represent stress, mechanical
displacement, strain, electric displacement, and electric

field, respectively, while p and p are the mass-density and

electric potential, respectively. The material parameters
c~, e, and # are the elastic stiffnesses at constant electric

field, the piezoelectric stress constants, and dielectric

permittivities at constant strain, respectively. A segment

of the plate is indicated in Fig. 1, where X3is the coordinate

normal to the plate surfaces.
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Fig. 1. Segment of a laterally unbounded crystal plate of th~ckness
2h, with laboratory coordinates xi superimposed. For the thm~ess
modes considered, all fields vary only along the thickness co-
ordinate X8.

The pertinent sets of equations which have to be solved

simultaneously are (see [4]) : the stress equations of

motion, corresponding to Newton)s equations; the equa-

tions defining mechanical strain; the divergence relation

from Maxwell’s equations, in the absence of free charge;

the electric field-electric potential relations, in the quasi-

static approximation; and the linear piezoelectric con-

stitutive relations characterizing the medium [11].

Assuming field variations only along the direction of

propagation, x3, and a time factor exp ( +jd), henceforth

omitted, these equations take the form

T3i,3 = — pW2Uj (1)

D,,, = O (2)

T3j = c3jk3E?&,3 + e33jP,3 (3)

Here and elsewhere, a Latin index has the range 1,2,3.

Only the three stress components Tsi are considered here

since only they govern the plate motion and take part in

the boundary conditions at the plate surfaces.

Substituting (4) into (2) gives

P,33 = (e3k3)C33s) Uk,33. (5)

We treat the case of an exciting electric field in the

thickness direction which is produced by electrodes on the

plate surfaces, and is referred to as thickness excitation of

thickness modes (TETM). As a result, p varies only

with x3, and integration of (5) yields

(6)$0 = (e3k3/t33s) Uk + a3X3 + b3;

the integration constants as and bs are determined by the

electrical boundary conditions imposed. Insertion of (6)

into (4) shows D3 to be a spatial constant given by

D3 = – e33sa3 (7)

so that the longitudinal component of the electric displace-

ment is independent of X3.
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The three stress components T~j (w) in (1) and (3)

represent the force–density vector acting across a plane

normal to ~s. We will designate this vector by tj(w).

Moreover, when (6) is substituted into (3) it is found that

Tsi can be separated into two parts as

Taj~tj=tj+fi (8)

where

t; = e33ja3 (9)

and

~j = &@k,s. (lo)

Here

~sjhs = c3jksE+ ‘8sies~s/@ (11)

are the “piezoelectrically stiffened” elastic stiffnesses at

constant normal electric displacement and constant

tangential electric field. The vector ti is solely a conse-

quence of the particle motion, whereas fj is directly

produced bythe electric field –a~inthe xs direction.

Equation (10) is one of the equations of motion of the

particles, and when substituted into the other equation

of motion, (1), gives

~?j~?uk,?~+ PW2Uj= O (12)

which shows that the components uk are coupled through

the elastic constants.

Equation set (12) may be solved by assuming the dis-

placement vector u~ (ZS) to be of the form ~h exp ( &~Kzs),

which will satisfy (12) provided

(~sj~s – c8~k)@~= O (13)

with

G = p&/K2. (14)

To obtain a nontrivial solution to (13), the determinant

of the matrix multiplying Bkmust vanish. The determinant

yields a cubic in c, which has three real, positive roots

d~), from which three real wavenumbers Knz may be ob-

tained from (14) for a specified value of co. Each c@J also

determines a set of ratios among the components ~k?n

of the corresponding eigenvector. These components

may be taken to be real, and when the eigenvectors are

normalized to unity, the resulting fk are then the direction

cosines of the particle displacement for each of the three

plane-wave modes (m = 1,2,3). The three vectors Om

ih2, and DM are orthogonal, and are the normal coordinates
of the material. Using these as a basis [12], [5], we

define transformed force–density, displacement, and

piezoelectric coefficient components by

tm”= ~kmti (15a)

‘l&” = @k#, (15b)

e~o = ~kme33!. (15C)

.,. ––.——. —--.—- 17

Because the eigenvectors are orthonormal, the iriverse

transformations have as coefficients &nk.

B. Network Representation of a Plate

When the separation expressed by (8) is made in the

transformed system, it is found that, for each mode m,

the particle displacement Ufi” and the vector l~” are

parallel. We may therefore write

Zmo= ~ vm(z3) (16a)

‘umo= juumo = —Im (23) . (16b)

Here Vm(z3) and 1~ (x3) describe the x3 dependence of the

modal stress vector and particle velocity, respectively, and

A is a suitable area normal to the direction of propaga-

tion.

Substituting (16) into (1) and (10), it is found with the

help of (S), (13), and (15) that V~ and 1~ satisfy

Vm,3 = ‘jK&mI. (17a)

1.,3 = ‘jKm ; V. (17b)
m

where

Zm = A (pc@@)1/2.

Equations (17) are the Heaviside transmission-line

equations [13]. Thus V~ and Im maybe thought of as the

voltage and current on a modal transmission line having

characteristic impedance Z% and wavenumber IC~. With

this viewpoint, each plane-wave mode may be modeled

by a transmission line as in Fig. 2, with the understanding

that the actual stress vector t~” and particle velocity

v~” are to be recovered via (16). The positive senses of

V~ and Im along the transmission lines are indicated in

Fig. 2.

We consider now the modeling of the potential (6)

and the stress vector ij of (9) by the equivalent circuit.

In order to show that the presence of these field quantities

is correctly accounted for by the equivalent circuit of

Fig. 2, we first derive expressions for the potential dif-

ference between the surfaces of the plate and the com-

ponents of f, along the eigenvectors pknz.
The electrical potential between the surfaces of the

plate is given by the difference between ~ ( +h) and

p ( – h), where p is given in (6). For convenience, we de-

fine the capacitance CO and the dimensionless numbers

n~ via the relations

Co = Ac33s/ (2h) (18)

nn = Ae~O/ (2h). (19)

Recognizing that the particle displacement U, (w) in (6)

can be written as a sum of the modal particle displace-

ments u~”(xs), and with the help of (16b), (18), and (19),
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(Iq

(20)

(?)

X3,-)) X3=h
I 1

A I,A~

“m:
a’ a

Fig. 2. Seven-port normal-mode equivalent circuit for the crystal
plate of Fig. 1, but without mechanical boundary networks and
loads.

it is found that

CP(+h) – P(–h)l = Zh – ~j~o

.[lm(+h) – lm(–h)]. (20)

The total force A Tsj ( +h) over the area A at the sur-

faces of the plate is seen from (8) to be the sum of A&

and the sum of A$~O( +h) for the three modes. In order

to include the force Atj into the network, we resolve it into

its components ~~ along the three orthogonal vectors

p~~. Thus from (9), (19), and (15c)

Vm = A&@~~ = n~(2ha,) (21)

where the factor 2ha3 has been displayed since it represents

the contribution to the potential between the plate sur-

faces from the uniform field along m. Recalling from

(16a) that V~ measures the force Ai~O along ~~~, it is seen

that V~( Ah) + ~~ gives the total force along ~km at

the plate surfaces.

Equations (20) and (21 ) are modeled in the equivalent

circuit of Fig. 2 by the ideal transformers at the ends of

the transmission lines and the series capacitor of value

– CO. The terminals a – a’ represent the actual electrical

terminals for the electrodes on the surface of the plate.

The potential of node a above a’ is given by [p.(+h) –

q ( – h) ]. The voltage 2has is the potential of node b
above node bf. F,or ideal transformers, the dot convention

is used to indicate which terminal of the secondary has

positive (negative) voltage when the voltage at the dot

on the primary side is positive (negative). Also, if current

flows in (out) at the dot on the primary, it will flow out
(in) at the dot on the secondary.

The orientation of the dots on the ideal transformers

is such that the voltage 2has across the primaries reflects

itself so as to add the secondary voltage n~ (2ha3) to the

voltage V~ ( *h) at either end of each transmission line.

Thus from (21) the voltage at the mechanical terminals

(10)-(6”), and hence the component of A.Tsj along

&~, will be T7m+ V~( =th). In other words, the network
properly gives the stress at the surfaces of the plate.

The current on the lower wire of each transmission line

in Fig. 2 is in the opposite direction to that on the top

wire. Hence in view of the dot convention, the currents

I+ and I-in Fig. 2 are seen to be

1+ = ~ n.~~(+h). (22j
m

Since the current through the capacitor – CO from node

a’ to bf is [I– — 1+], the voltage Vb,a, of bt above a’ is the

negative of the voltage drop across — CO,and hence

1 [I- – I+].Vb)d = – ~.( _co) (23)

Because nodes a and b are at the same potential, the

voltage [p ( + h) — q ( —h) ] betweeri nodes a and a’

is equal to Vbl.t plus the voltage 2ha8 of node b above

b’. In view of (22), this statement is exactly that given in

(20). Thus the network properly models the voltage

relationship (20).

To complete the justification of the equivalent circuit,

it is necessary to show that the current I in Fig. 2 is the

one that actually occurs at the electrodes on the plate

surfaces. In view of (7), the total current flowing into the

electrodes at zs = + h is equal to the displacement cur-

rent @A#a3. From the network, it is seen that the

current I is given by

I =&CO[p(+h) – p(–h)] + 1+ – 1-. (24)

With the help of (20) and (22), this current is found to

equal the total displacement current.

In summary, the network of Fig. 2 correctly represents

the transmission line (17), the piezoelectrically induced

stress (21) due to the uniform field, and the displacement

current —jwAlY3. These relations, together with the ap-

propriate definitions and the eigenvalue equation (13)

are equivalent to the dynamic equations (1) – (4) that

govern the plate motion. The network is therefore an

exact representation- of the plate motion and its coupling

to an applied voltage. Note that in Fig. 2, the voltage

and current at the mechanical ports ( 1°) – (6°) are equal to

the components of the force A Ts~ and the negative

particle velocity – vi along the orthonormal eigenvectors

~i~. In Section III, it is shown that a network of ideal
transformers will convert the components along the

eigenvectors to the components along the xi coordinates

of Fig. 1.

C. Impedance Matrix Representation

The motion of the plate, as tiewed from its surfaces, may

also be described by a seven-port impedance matrix. In

Fig. 3(a) we enumerate the seven pairs of port variables

that completely describe the electromechanical behavior

of the plate in Fig. 1. These ports consist of the six com-

ponents of force A T3j( &h) along the xi coordinates, three
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SEVEN- PORT
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LOWERPLATE SURFACE

z, z,
tone, c’

o— 0 0
j sin8,

z~ z*
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o

z,
o— jtanb$ o o— j sin a3

z, z,
isin 8,

0 o— 0 0j tan 8,

Z2 Zz
o— 0 o— 0

j sin Et j tan .92

Fig.3. (a) Seven-port electromechanical representation of acrystal
plate. Ports 1), 2), and 3) are the mechanical ports at the lower
plate surface 28 = –h. Ports 4), 5), and 6) are the mechanical
ports at the upper plate surface X3 = +h. For$e and particle
velocity components +e the mechanical port vambles; the port
variables at the electrwal port 7) are electrical voltage and cur-
rent. (b) Seven-port electromechanical knpedance matrix for the
piezoelectric crystal plate of Fig. 1, expressed in normal co-
ordinates.

on the top of the plate and three on the bottom, and the

corresponding particle velocities v,. The seventh pair

corresponds to the purely electrical voltage and current

at the electrodes.

In order to represent the plate completely, the seven-

port impedance matrix [Z] for the box in Fig. 3(a) is

required. We can find [Z] most simply by first obtaining

the impedance matrix [Z”] that relates the port variables

expressed in normal coordinate, as in Fig. 2. The overall

impedance [Z] in laboratory coordinates is then found

from [Z”] by a similarity transformation. We show in

Section III that [Z] is realized simply by attaching

19

additional circuitry to each set of mechanical ports of

the network of Fig. 2.

For the realization of [Z”], we define the port voltages

to be

V=O = A T3i ( – h )~~mj = = m = 1,2,3

V.” = A TU ( +~)Bim, m = m + 3 = 4,5,6 (25)

and V7° is the actual electrical voltage across the electrical

terminals. Port currents 1:0, taken positive when flowing

into the seven-port, are defined as

1$ = — v; ( —h) &m, & = m = 1,2,3

1/ = + vi ( +h) i% E = m + 3 = 4,5,6 (26)

and lTO = 1 is the actual electrical current, equal to

–juAD2.

The normal-coordinate impedance matrix elements

[2°] have been derived from the network of Fig. 2 and

are shown in Fig. 3(b), where

Om= 2h% (27)

The matrix elements of [Z] are of four types, viz., driving-

point impedances, which are either electrical or mechan-

ical, and transfer impedances, which connect either two

mechanical ports or a mechanical port to the electrical

port. Apart from the mode index number, all the driving-

point mechanical impedances are of the same form. The

transfer mechanical impedances between the two ports

of the plate that have the same value of the mode index

number are also equal, as are the corresponding electro-

mechanical mutual impedances, so that Zrgo is symmetric.

Similar considerations apply to a formulation of the seven-

port in terms of admittances. The impedance matrix has,

however, the simpler form, because a number of matrix

elements are equal to zero.

III. EQUIVALENT NETWORK FOR THE MECHANICAL

INTERFACE

A. The Mechanical Boundarg Network

The matrix and network so far described refer to the

normal-coordinate system, which was introduced for the

purpose of uncoupling the motions of the plate so that

they could be represented by three modal transmission

lines. From the matrix of Fig. 3(b), the overall impedance

matrix [Z] for the plate (with mechanical ports referred

the the laboratory coordinate system) is obtained as

follows. Defining the mechanical port voltages and

currents as the force components A Tt, ( *h) and velocity

components AU, ( ~ h), the port voltages and currents in
Fig. 3(a) are related to those in Fig. 2 by

VA = BX.VrO

I, = B.tI/ (28)



20 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, JANUARY 1974

where

BXM = P,j(i,j = 1,2,3; A = i,i + 3;u =~,~ + 3)

B77 = 1 (29)

BAT = B7A = O (x #7).

The overall impedance matrix elements ZXP are then

found to be related to Z# by the similarit y transformation

The network representation of (30) requires a net-

work at each set of mechanical ports (XS = =th) in Fig. 2,

as prescribed by the orthogonal transformation from the

normal-mode coordinates to the laboratory coordinates

of Fig. 1. A multiwinding, ideal transformer intercon-

nection that realizes this transformation is given by

Carlin and Giordano [14] and is shown in Fig. 4. In the

figure, the turns ratios ,& are the ith components of the

mth eigenvector in the laboratory coordinate frame. The

figure may be reversed, and the primaries labeled with the

normal coordinate variables; this is achieved by inter-

changing subscripts on the components of bi~ for the

transformer turns ratios.

By attaching two networks of the form given in Fig. 4

to the network of Fig. 2, the combined circuit becomes

an exact characterization of the piezoelectric thickness-

mode plate subject to arbitrary boundary loadings. The

network of Fig. 2 cannot be used directly for this purpose

because the variables at each port are composed of a

combination of the actual mechanical boundary con-

ditions. For example, a single compressive stress acting

along m upon both plate surfaces appears generally as

voltage sources impressed at all six mechanical ports.

For the practical case of two plates in welded contact, the

boundary conditions require that the stress and velocity

components of both plates be continuous. This makes

inevitable the introduction of a transformation network

between the equivalent circuits representing the two

plates, since each circuit is based upon the normal co-

ordinates proper to its own crystal plate, rather than

upon the more convenient laboratory coordinates xi.

In particular instances, the orthogonal transformation
networks may simplify or disappear entirely. This may come

about for two distinct reasons. First, the /3i~ array may be

reduced in complexity as a result of the nature of the

crystal and/or the chosen direction of propagation.

Second, the boundary impedance seen by the plate

surface may bring about a simplification. We consider a

simplification of the network due to a special set of i-h

in the illustrative example of the stacked-crystal filter

given in Section IV.

The second type of simplification, due to the form of

the boundary impedance, may be illustrated by examining

the effect of placing a thin, but heavy, electrode film on

a plate surface. If the plating is characterized by a lumped

PORTS
REPRESENTING
Xi CCWOINATES

i

E,l “

B, “

6“13

8“
21

B“

B“

PU?TS
REPRESENTING

NORMAL
COORDINATES

Fig. 4. Ideal transformer realization of an orthogonal transforma-
tion: the mechanical boundary network. One of these networks is
attached to each side of the network of Fig. 2 to provide the
overall network realization of the crystal plate driven in thickness
modes. The bi~ are the direction cosines of the particle motion
for the modes (m).

mass m per unit area with its elastic properties neglected,

it appears in the equivalent circuit as a set of three in-

ductances, each of value mA, and each attached to one

of the x.-coordinate ports in Fig. 4. At the other ports

one then sees the same thing, viz., three inductances of

value mA. This comes about because the network of Fig.

4 subjects impedances to similarity transformations,

as may be seen from (28) – (30) by allowing the Greek

indices to range only over the values 1, 2, and 3. The

impedance matrix in question is simply a scalar times the

unit matrix so the impedance matrix is therefore un-

changed by the transformation. The mechanical trans-

formation network consequently can be omitted, and the

inductances placed directly at the normal-coordinate

ports of Fig. 2 that represent the surface in question.

B. The Traction-Free Single Plate

As the mass per unit area vanishes, the boundary be-

comes traction-free, and the inductances are replaced by

short circuits. The exact equivalent circuit realizing

this situation at both surfaces is shown in Fig. 5. The

input admittance, Yi. (TETM ), seen at port seven, can

be readily calculated, and it agrees identically with that

given analytically by Yamada and Niizeki [5], Here the
three modal transmission lines are mechanically uncoupled

at the boundaries and the piezoelectric effect provides the

sole coupling mechanism.

One may use the symmetry of Fig. 5 to simplify the

pertinent network. Because of the transformer dot array,

the mechanical voltages produced at the ends of each

transmission line have the same polarity, and the mid-

points of the lines are nodes of mechanical current.

We may therefore bisect the network of three transmission

lines at their centers, thus obtaining six lines (each of

length h), which are open-circuited at the terminals pro-

duced by the bisections. The six lines consist of three

sets of identical twins, which are all connected in parallel
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EQUIVALENT NETWORK ANALOG REPRESENTATION

OF TRACTION-FREE PLATE, TETM.

Fig. 5.
plate

Equivalent network analog representation of a crystal
with both surfaces traction-free. The vanishing of the

stresses at the boundaries leads to the disappearance of the
mechanical boundary networks and to imposition of short cir-
cuits at the transmission-line ends.

Ill> .

IIFnl 2YI ,Kl
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.

Yin (TETM) Ill<n3 , 2’f3 ,K3

Fig. 6. Bisected version of Fig. 5. The exact equivalent network
for a traction-free plate driven by a thickness-directed field is
reduced here to its simplest form. The polar nature of the piezo
dri~e l~ads to excitation of only the antisymmetric modes having
vamshmg particle displacement at theplate midplane.

through their piezo transformers. Each set of twin lines

can be further reduced to a single line, having twice the

characteristic admittance of the individual lines. Our

manipulations thus lead us to Fig. 6. Here the three
modal transmission lines have been connected via a

common-core transformer, so that the secondaries are in

parallel. Application of standard network techniques has

thus brought the circuit realization into a form where the

analysis may be made by inspection. Casting the plate

problem into network form therefore allows systematic

application of highly developed network procedures of

analysis and leads to the possibility y of an overall opti-

mization of the system performance.

C. Stacking of Two Plates

When two crystal plates are to be brought into welded

contact, as shown in Fig. 7, the<physical boundary con-

ditions require that the components of traction and

displacement be continuous in the laboratory coordinates.

The network of Fig. 4 attached to each’side of the normal-

coordinate net work of Fig. 2 produces these stress and

displacement components directly at the xi-coordinate

ports. In order to represent the welded contact of two

plates, it is only necessary to connect together the x~-

coordinate ports of the mechanical transformation net-

works that separately represent the two boundaries to be

mated, as shown in Fig. 8. This network may be simpli-

fied by suppressing the primary loops of the resulting

interconnection, thus obtaining the final network for the

/
I

(%)2

Fig. 7. Two-layer stack of crystal plates showing relative rotation
about the common Z8 axis. The illustrative example of Section IV
describes the response of a stack of two plates operated as a
filter, with input and output sharing the common electrode
located at the interface.
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Fig. 8. Exact analog representation of mechanical @terface
coupling between two tryst als having arbitrary am~otropy.
Plane-wave propagation is normal to boundary, and plezoelec-
tric drive connections have been omitted for clarity. A thin,
massy electrode located at the interface would be represented by
insertion of an inductor in series in each of the central loops.
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Fig. 9. Mechanical interface network representing welded contact
between two crystals in the most general case of anisotropy. This
figure is obtained from that in Fig. 8, to which it is equivalent,
by suppressing the internal loops in the transformer intercon-
nection.

interface shown in Fig. 9. An additional superscript has

been added, where necessary, to distinguish between the

two crystals. Fig. 9 is the most general situation involving

welded mechanical coupling that may arise between two

planar crystal interfaces. All piezoelectric connections

have been removed from the figure for clarity. They may

readily be grafted on by inserting the piezoelectric drive

transformers, in series with each transmission line, in the

manner of Fig. 2. The piezoelectric transformer primaries

lead off to the electrical port connections of each plate.

The practical case of a negligibly thin electrode film shared

between the juxtaposed crystal plates at the interface is

simply represented by directly connecting the electrical

terminals that are adjacent at the boundary. The same

applies even if the electrode mass cannot be neglected,

except that the inductances that represent the mass are

placed in series in each of the primary loops of Fig. 8.

By utilizing the circuit of Fig. 2, augmented by bound-

ary networks to represent each crystal plate, and with

the interconnections described to represent satisfaction

of welded-interface boundary conditions, the generaliza-
tion to a stack of any number of plates follows immedi-

ately. In a multilayer stack, the electrodes of the individual

plates may be connected electrically in series, in parallel,

or arbitrarily grouped in a series-parallel combination,

as in the case with conventional stacks [15].

A particularization of Fig. 9 that we will use in our

illustrative example in the next section is given in Fig. 10.

Here we show a welded contact between a general tri-

clinic substance on the right, and a material having

monoclinic symmetry on the left. Representing the tri-

clinic crystal is a mechanical interface network in its

most general form, as given in either half of the network

of Fig. 9. The left-hand side of the interface network of

MONOCLINIC CRYSTAL
I I

INTERFACE NETWORK TRICLINIC CRYSTAL

‘-- ~~h.
A

,>;~ “-- ,3

.—. — .—. — .—. — .—.
l—

I

Y,(l],K~ll I Q’)mt > ; ‘3(’’)”3’2’.-
--T

I
I

I

“(I)MS)l !’ICiE!$Rll
‘E

I Y*? KJ’)

*T[. I
(5)

,2, (2)

P,, “

~1

(21

“Igf”l

(4)

RI “
I Y, , ~ /2)

(11

I I

Fig. 10. Exact mechanical interface network specialized to the
situation of welded contact between a general triclinic tryst al
and a tryst al of monoclinic symmetry. Piezoelectric interconnec-
tions have been omit$ed for clarity; they may be added in a
simple manner, as described in Section III-C.

Fig. 10 may be identified, for example, with a rotated

Y-cut quartz plate [11]. The rotation destroys the class

32 symmetry, and makes the plate appear, with respect

to coordinate axes rotated around the original twofold

axis, as a crystal in class 2. We take our Z1 along the

twofold crystallographic axis and X3 along the plate

thickness. Then mode” (1) is a pure-shear mode, which is

the only mode that is piezoelectrically driven in TETM.

If the triclinic crystal is arbitrary, we have to attach

piezoelectric transformers to all transmission lines on the

right side of the figure. On the other hand, a rotated Y-cut

quartz crystal which has been further rotated about the

23 (thickness) axis with respect to the laboratory frame,

appears to be triclinic elastically, but only mode (1) may

be driven piezoelectrically in TETM.

The network of Fig. 10 thus represents the situation

where two rotated Y-cut quartz plates have been joined,

with the laboratory frame coinciding with the xi set of the

left crystal, and the ZI axis of the right crystal at an angle

to the Z1 axis of the other.

IV. TWO-LAYER STACKED-CRYSTAL FILTERS

A two-layer stack of crystal plates, with an electrode at

the interface in addition to those at the free surfaces, can

be used as a filter element by utilizing the two electrical

ports as input and output, and arranging the plate thick-

nesses and orientation angles properly. We consider the

plates shown as in Fig. 7 to be in welded contact and to be

driven in TETM.

Each rotated Y-cut quartz crystal has the rotational

symbol ( YX1) 0, the angle 0 describing the rotation about

the crystallographic X axis [11]. The values of 0, as well

as the rotation angle x (about the thickness) of one crystal

with respect to the other may be independently chosen.
Therefore three angles are disposable for a two-layer

stack of singly rotated crystals. The relative rotation of

the plates about the common X3 axis provides a means of
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investigating the effects of change in the mechanical-in-

terface transformer turns ratios.

In view of the three electrodes, the input and output

can be taken in a number of ways; we shall consider the

central electrode as common to both input and output.

Thus, for instance, the electrode placed on the top plate

could lead to the generator, the electrode at the lower

plate surface could be connected to the detector, and the

central electrode could serve as a common ground. From

the results of previous sections it is apparent that even a

simple two-layer stack generally possesses six transmission

lines which are all coupled together mechanically and also

piezoelectrically. For the purposes of the example, we

introduce a number of simplifications so that the essential

behavior of this class of devices may be demonstrated

without an extended discussion.

Because of the completeness with which its material

constants are known, and because it preserves so many

connections with currently used devices, we choose

quartz for the two media in Fig. 7. Specifically, both

plates individually are chosen to have the same crystal-

cut orientation, that of the AT-cut: ( YX1) 0, 0 = +35015’.
This choice has four major consequences. First, the be-

havior of single plates of thk cut is universally known, so

that our filters can be contrasted with known results for

quartz filters of standard construction. Second, the

selection of the same cut makes the eigenvalues of both

plates equal, so that the critical frequencies of each plate

(taken separately) are in the same ratios. Third, the lower

shear mode is a pure mode, so that the interface network

is simplified. Finally, only the pure shear mode in each

plate is TETM-drivable, thus simplifying the piezo-

electric interconnections.

The overall circuit for this filter is shown in Fig. 11,

where the mechanical interface network is that of Fig. 10.

The outer surfaces of the plates are traction-free, so that

the transmission- lines are terminated in short circuits.

Since both plates have the same orientation angle O,

the corresponding transmission lines on each side of the

figure are identical. When the relative rotation angle $ is

zero, the device becomes identical wit~ a single plate of

quartz, except that a central electrode is present. The

mechanical network then degenerates into a set of three

direct feedthroughs. When ~#00, the network of Fig. 10
is appropriate and the modal matrix components @i~(2),

governing the transformer ratios on the right-hand side,

are then functions of ~ if the Xj axes of the crystal on the

left-hand side are chosen as the reference set.

In a specific numerical illustration, we take the plates

to be of equal thickness, which is such that wl/2r = 100

MHz, where w is the angular frequency at which the

reference plate (taken alone) has its first admittance

null. The effect of making the plates of equal thickness is

to force the frequencies of both plates to be the same,

so that only three rather than six modes have to be con-

sidered. Having the overall impedance matrices for each

layer, as given in Section II, it is not difficult to obtain

the two-port impedance matrix between the electrical

ports of the two-layer stack. The top and bottom faces

()
(30), r~ ( ‘ ) ,KJ1 (60 ), (3°)2

) (
Y3 (2, K32

)
(6°)2

I (FIG 10) I
(10)2 YI ‘) , K,(” (40)2

i-----1 i-----l

INPUT OUTPUT

Fig. 11. Complete network representation of the electrical two-port
formed by a two-layer stack of crystal plates in welded contact.
The outer plate surfaces are free of tractions, and one mode only
is -taken to be piezoelectrically driven in each crystal. In the
general case the interface contact ~?uld be represented by the
net work of Fig. 9; that of Fig. 10 1s used for the illustrative
example of Section IV.

of the plates are traction-fieej so that the transmission

lines representing the plates, are shorted there; the three

internal mechanical ports of each plate are connected

together, thus leaving only the electrical ports uncon-

nected. Matrix methods pertinent to the interconnection

of networks may be found in [16].2

Once the interconnected networks have been charac-

terized by a two-port impedance matrix Zij) the attenu-

ation may be determined provided the source and load

impedances are known. We assume for simplicit y that these

are equal and purely real, namely

z source= ZIO.~ = R = l/(~lCo) = 50 !2

where the capacitance Co refers to the shunt capacitance

of a single plate. Then using the equations found, e.g.,

in Zverev [2], the attenuation loss in decibels, is

.L(dB) = 10 Iog,o {[Z,, + Z2J2 + [(det Z) /R + ~lz)

-20 Ioglo I 2Z1, I.

Using all of the preceding simplifying assumptions, we

are left with results that are easily described and analyzed.

The computer-generated output is plotted in Fig. 12,

where the normalized frequency fi = u/wl is used as the

abscissa. Curves are presented for the three angles ~ = 0°,
4°, and 8°. When ~ = 0°, the stack appears as An tisym-

metrically driven single plate of t~ckness 4h and, because

of the lack of symmetry, the stack possesses resonances

at both odd and even integer values of L?.The only driven

2 See [14].
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Fig. 12. Attenuation versus frequency for. a two-layer stacked-
crystal filter comprising 1OO-MHZ AT-cut quqrtz plates in a
50-Q system. Frequency is normalized to the lower shear mode.
Theangle ~measurest herelativer otationof the plates about a
common thmkness axis. Poles of attenuation occur whenever one
of the short-circuited transmission-line ends from Fig. 11 is re-
flected to the interface to produce an uncoupling. Note the
log–log ordinate scale.

mode is the lower shear mode, which is a pureiy trans-

verse mode. Hence t@s mode is completely. uncoupled
from the others, so that any resoriances due to them do not

appear in the attenuation function. In both cases whe;e

t >0°, the attenuation function has poles at Q = i.oob,
1.142, and 2.105, corresponding to modal velocities Vti),

of 3.328, 3.800, and 7.007 X 10~ m/s. An easy, way to

explain the presence of the poles of attenuaticm is to

recog~ize that whenever a transmission line ~~comes one

half-wavelength long, the short circuit at the traction-

free boundary appears also across the other end of the
line and thus uncouples the two plates..

Although the poles are fixed, the, shape o! the curves

may be changed by varying ~, so that one has a simple

means of obtaining different filter. responses. Our illustra~

tion thus indicates how devices based. on ,these principles

might operate and provides an example that is still’ quite

simple and readily interpreted. Even so, the resulting

curves for + = 4° and 8° already indicate ,reasonable

wide-band filter responses in the region just below Q = 2;

no attempt has been made to op$imize these responses in

any way. Removing the restriction of equal plate thick-

nesses will also permit narrow-band filters to be designed

as stacked-crystal filters.

The possible filter responses available for even the

simplest two-layer structure are very large. Even if the

plates are restricted to a single material, each plate cut is

specified by two angles in the general case, so with the

mutual rotation angle between the plates there are five

disposable parameters to which must also be added the

ratio of the plate thicknesses. A large area for investiga-

tion is available here. Extensions to structures composed

of more than two plates, and the use of different materials

fdr each of the plates further. widen the possibilities of

these devices for frequency selection and control, and

signal processing.

V. CONCLUSION

In thk paper, rigorous network analogs have been ob-

tained for configurations of stacked plates excited piezo-

electrically. The realization and optimization of practical

devices based upon these ideas, however, can best pro-

ceed by introducing a step which is intermediate between

a circuit and the physickl device it represents. This step

consists in utilizing the network to simulate the ideal

behavior of the device by using computer-aided circuit-

design programs. In this way, changes can’ be made easily

without hating to resort to a breadboard model each

thi-ie the effect of some alteration in structure or ‘in

composition needs to be known. Since the networks

are exact representations of the physicial model, they will

faithfully reflect the behavior of the devices.

An illustrative example is given that consists of com-

puter-simulated attenuation response cuties of a new

tjpe of two-layer, integrated, wide-band filter. In this

configuration, the frequency-selective detice is composed

of two media wherein the three modes in each layer are

permitted to interact with each other via the mechanical

boundary conditions. Mutual shielding or packaging is

not required. The device is inherently robust because of

its integral construction, and also lends itself readily to

miniaturization. By utilizing two or moi-e layers, integral,

stacked-crystal filters of this type could readily be made,

these being completely compatible with integrated-

eircuit technology.
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Design of Unanodized Surface-Wave Transducers with

Spectral Weighting

GRAHAM R. NUDD, SENIOR MEMBER, IEEE, MICHAEL WALDNER, MEMBER,

R. L. ZIMMERMAN, MEMBER, IEEE ‘

Abstract—The technique commonly employed to provide a wide-

band surface-wave transducer with a specific conversion loss as a
,DENT,CAL TRANSD”C,.S

function of frequency uses the linear frequency-modulation (LFM) A.
(quadratic-phase) design. This provides the necessary dispersion,
and anodization is then employed to obtain the required conversion
loss. In some applications the anodization presents complications in
that the beam generated has nonuniform width, and diffraction and
phase-front problems can result. An alternate technique is described
that relies on varying the number of effective transducer elements
as a function of frequency to provide the conversion-loss variation.
As examples of this technique, a flat bandpass filter for a nonlinear
convolver and a very large fractional-b~dwidth transducer (with
spectral weighting to provide sidelobe control) for a memory appli-
cation are described.

I. INTRODUCTION

I N many applications of surface-wave acoustics for signal

processing it is necessary to control the insertion loss

as a function of frequency across the band of the filter [1].

The conventional technique for achieving this is to build

an array with a linear frequency-modulated (LI?M ) char-

acteristic providing the wide bandwidth and then to

apodize the elements within the array to provide the

spectral weighting [2]. The anodization can cause prob-
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Fig. 1. Schematic of surface-wave filter.

Iems because of the nonuniform beamwidth it produces

and the variation in diffraction losses across the band.

An alternate technique which has found application in

a variety of devices and avoids anodization and its associ-

ated problems, but provides a controlled insertion loss as

a function of frequency, is described here. The technique

relies on varying the number of elements within the array

that are synchronous at any given frequency. By varying

the number of effective elements N(j) as a function of

frequency ~ across the band, the insertion loss can be

controlled to provide the desired spectral characteristics.

This technique requires control of the finger positions to


