14 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-22, No. 1, JANUARY 1974

REFERENCES

[1] K. C. Kao, “Dielectric surface waveguides,”’ presented at the
URSI General Assembly, Ottawa, Canada, Paper 6-3.2, Aug.
18-28, 1969. . . .

[2] M. M. Z. Kharadly and J. E. Lewis, “Properties of dielectric-
tube waveguides,” Proc. Inst. Elec. Eng., vol. 116, pp. 214-224,
Feb. 1969. .

[3] M. Sugi and T. Nakahara, “O-guide and X-guide: An advanced
surface wave transmission concept,” IRE Trans. Microwave
Theory Tech., vol. MTT-7, pp. 366-369, July 1959. .

[4] T. Nakahara and N. Kurauchi, “Millimeter waveguides with
applications to railroad communications,” in Advances in
Microwaves, L. Young, Ed. New York: Academic, 1969,
vol. 4, p. 191.

5] K. C. Kao and G. Hockham, ‘“Dielectric-fibre surface wave-
guides for optical frequencies,” Proc. Inst. Elec. Eng., vol. 113,
pp. 1151-1158, July 1966.

[6] W. K. McRitchie and J. C. Beal, Dep. Elec. Eng., Queen’s
Univ., Canada, private communication.

[7] G. L. Yip, “Launching efficiency of the HE,; surface wave mode
on a dielectric rod,” IEEE Trans. Microwave Theory Tech.
(1.9770 Symposium Issue), vol. MTT-18, pp. 1033-1041, Dec.

0

1970.
(8] M. M. Astrahan, “Guided waves on hollow dielectric tubes,”
Ph.D. dissertation, Northwestern Univ., Evanston, Ill., 1949,
[91 W. C. Jakes, “Attenuation and radiation characteristics of di-
electric tube waveguides,” Ph.D. dissertation, Northwestern
Univ., Evanston, IlI., 1949.
[10] D. G. Kiely, Dieleciric Aerials. London: Methuen, 1953.

| Systématic Design of Stacked-Crystal Filters by Microwave
Network Methods

ARTHUR BALLATO, seNtor MEMBER, IEEE, HENRY L. BERTONI, MEMBER, IEEE, AND
THEODOR TAMIR, SENTIOR MEMBER, IEEE

Abstract—A class of novel frequency-selective devices, called
stacked-crystal filters, is discussed in terms of a microwave net-
work approach that leads to a systematic procedure for their analysis
and design. These devices consist of two or more crystal plates that
are stacked together, with thin electrodes being provided between
some or all of the adjacent interfaces for the purpose of translating
mechanical properties into electrical signals via piezoelectric
coupling. In such a configuration, the electromechanical coupling
that occurs at the plate surfaces produces selective interactions be-
tween the elastic modes in each crystal plate, as well as between
these modes and all of the modes in the other plates included in a
stack. A judicious combination of materials and dimensions can
therefore provide a very wide range of desired filtering charac-
teristics.

For stacks with thin plates, only three thickness modes appear in
each plate and they can be described in terms of three transmission
lines; their coupling at the plate surfaces is then expressible in
terms of ideal transformers that represent the mechanical junction
between two adjacent plates. The interface electrodes appear as a
set of terminals, to which are attached capacitors and another set
of ideal transformers that represent the piezoelectric drive. In this
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manner, each plate can be rigorously described in terms of a well-
defined network that serves as a building block. A stack consisting
of any number of plates can therefore be regarded as the connection
of an appropriate number of such building blocks, thus reducing a
complicated mathematical problem to a systematic representation
that can readily be handled by conventional techniques. A simple
example of a two-layer quartz device operating on these principles
is given. The simulated behavior obtained from the exact equivalent
network discloses that wide-band filters may be designed. Construc-
tion of such devices can be expected to yield robust, miniature
filters of high performance possessing a large diversity of de-
sired characteristics.

I. INTRODUCTION

IEZOELECTRIC crystal plates that vibrate mechan-
ically in response to an applied voltage have long been
used as compact, rugged, very stable and low-loss one-
port resonant elements in frequency-selective circuits.
In this paper, a method is given for representing and
analyzing a new class of bulk-waye crystal filters, which
are formed by stacking two or more erystal plates with
electrodes between them [1]. One can thus expect to
achieve filters that take advantage of all the desirable
properties of crystal plates and to exploit the diversity ob-
tained by joining plates made of different materials. A
principal contribution of this study is the development of
new equivalent networks, which make possible the
systematic investigation of these stacked-crystal filters.
The traditional crystal filter consists of an assembly
of individual crystal resonators that are wired into an
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appropriate network [27]. Coupling among the resonators
takes place entirely electrically, this being the source of
some of the limitations on these devices. A more recent
development is the monolithic filter [3], in which two
or more pairs of electrodes are placed laterally adjacent
to each other on a single crystal plate to permit acoustic
coupling between resonators. In general, these filters
permit a size reduction over discrete-resonator units, but
the operating characteristics are not greatly different,
and a restriction to relatively narrow bandwidths at
VHF frequencies is a drawback common to both types of
crystal filters. Also because the plate thickness must be
of the order of wavelength, the lateral size required for
monolithic filters makes them fragile and difficult to
fabricate for frequencies in the range of 100 MHz and
higher. Since the stacked-crystal filters are built by
vertical stacking rather than lateral extension, they do
not suffer from this limitation.

The realization of stacked-crystal filters requires the
exploitation of multimode coupling which occurs at the
interfaces between adjacent plates. For a single resonant
element, the analysis is relatively simple and has been
carried out [4], [5]. However, as no analysis has been
avaflable for the much more complex case of stacked
crystals, a principal portion of the present paper is
devoted to developing a general approach for the analysis
of these devices. This approach is based on a representa-
tion of stacked crystals by exact equivalent networks
that permit a systematic analysis of the effects due to
interface coupling between all of the thickness modes in
the plate. In these networks, each of the three plane-
wave modes in a single-layer material is represented in the
bulk by an acoustic transmission line, which is physically
equal in length to the thickness of that layer; in general,
the three transmission lines possess unequal characteris-
tics. At the interface between any two layers, the per-
tinent six transmission lines (three from each side) are
interconnected by transformer elements. Incorporation of
the piezoelectric drive mechanism requires an additional
simple network, which is connected only at the trans-
former terminals, thus providing further coupling be-
tween the transmission lines.

Equivalent-circuit representations have long been used
to characterize the behavior of piezoelectric vibrators and
transducers [6]-[8]. However, these have invariably
been single-mode representations which are inadequate
to deal with the multimode situation used in the stacked-
crystal filter realization.! The networks presented here
overcome this difficulty and have the additional advantage
of being pictorial as well as schematic; they thus account
in a simple, physically satisfying manner, for the spatial
propagation of the three plate waves and for their

1 A paper by Onoe, Trans. Inst. Elec. Eng. (Japan), vol. 55A, pp.
239-244, May 1972, in Japanese, was brought to our attention by a
reviewer. This paper has a multimode representation for the plate
but contains lumped elements with transcendental functional
variation.
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coupling at the plate boundaries, via both the piezoelectric
effect and the mechanical boundary conditions.

More recently, a transmission-line representation for the
propagation of guided acoustic waves, including plane
waves, has been developed [97]. In addition, a description
of plane-wave scattering at interfaces has been formulated
in terms of the coupling of transmission lines through
lumped-element networks [107]. While these transmission-
line and network representations are limited to the case
of isotropic media, the transmission-line representation
is general in that it applies to acoustic waveguides of
arbitrary cross section, and both transmission lines and
networks are applicable to plane waves obliquely incident
on an interface. The reflection symmetry of the guide
region in the plane normal to the direction of propagation
(or parallel to the interface in the case of plane waves),
resulting from the restriction to isotropic media, provides
a basis for associating each acoustic-field component with
either the voltage or current.

The transmission lines and networks discussed here
apply to piezoelectric materials, which are therefore
anisotropic, but they are restricted to plane waves whose
direction of propagation is normal to the interfaces.
Because, in general, anisotropic media are not reflection
symmetric in planes normal to'the direction of propagation,
the basis for associating acoustie-field components with
voltage or current differs somewhat from that used for
isotropic media [9], [10]. As a result, the transmission-
line and network representations for the two cases differ
in certain details, although both are entirely self-con-
sistent and exact within the context for which they have
been developed. The representation given here is also
consistent with previously developed networks for piezo-
electric resonators and transducers.

A key feature of the network representation developed
here is that the equivalent circuit for a stacked structure
is built up by the simple interconnection of basic blocks
of identical form, with each block accounting for the be-
havior of one plate. When an actual structure is to be
analyzed, it is therefore no longer necessary to perform an
ab initio mathematical analysis. Instead, the complete
characterizing circuit can be put down by inspection, thus
reducing the problem to one of network theory. Similarly,
the synthesis of a structure that realizes given performance
specifications reduces, via the circuit analog, to a problem
in the domain of networks. Since, for practical applica-
tions, the stacked-crystal device is part of a larger, com-
pletely electrical circuit, the electrical representation of
the mechanical portion provides a uniformity that lends
itself to optimization of the overall electromechanical
system. Because the equivalent networks are a pictorial
description of the mode interactions, they can greatly aid
the designer in selecting interactions that produce a
desired filter response. The network description also gives
immediate access to computer-aided circuit-design pro-
grams, which greatly facilitates the analysis.

In the following sections, the equations governing
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acoustic-wave propagation in unbounded piezoelectric
crystals are cast into transmission-line form, after which
the network realization for the plate is derived, and the
normal-coordinate impedance matrix is given. The
problem of stacking plates requires a boundary network
to account for the mechanical coupling between the
transmission-line networks representing each plate. The
general coupling network is derived and applied to the
practical case of welded contact between plates. The
paper concludes with an illustrative example in which a
computer simulation is used to generate the filter-response
function for a simple two-layer structure composed of
quartz plates of varying relative orientation. This example
demonstrates the application of these networks and con-
cepts to the development of actual devices, and illustrates
the systematic, efficient, and practical aspects of the
network characterization developed in the present work.

I1. EQUIVALENT NETWORK FOR A SINGLE PLATE IN

NorMAL COORDINATES

We shall first obtain a representation for the bulk waves
within a plate and, at the same time, account for the
piezoelectric effect within this region. However, the

. mechanical restrictions imposed by the boundary con-
ditions will have to be separately accounted for as an
additional effect; this will be discussed in Section III.

A. Acoustic Pldne Waves in Unbounded Piezoelecm'c Media

To establish notation, and also to introduce trans-
mission-line concepts in the present context, we shall
briefly consider the pertinent equatlons for the deserip-
tion of plane acoustic waves in a homogeneous, linear,
but arbitrarily anisotropic, piezoelectric substance. The
three modes, which are allowed for any assumed propaga-
tion direction, have motions that are coupled by the
elastic and piezoelectric constants; a normal coordinate
transformation uncouples them, and is shown to provide
a set of first-order differential equations which are to be
compared with the Heaviside equations for a transmission
line.

Notation and definitions regarding crystal axial con-
ventions, orientation, and constitutive relations agree,
for the most part, with the 1949 Standards on Piezoelectric
Crystals [11]. In agreement with usual tensor notation
[4], a subscripted index preceded by a comma indicates
differentiation with respect to the space coordinate
having that subscript, and the summation convention
for repeated indices is employed.

Weuse, T, u, S, D, and E to represent stress, mechanical
displacement, strain, electric displacement, and electric
field, respectively, while p and ¢ are the mass-density and
electric potential, respectively. The material parameters
c?, e, and € are the elastic stiffnesses at constant electric
field, the piezoelectric stress constants, and dielectric
permittivities at constant strain, respectively. A segment
of the plate is indicated in Fig. 1, where 23 is the coordinate
normal to the plate surfaces.

Fig. 1. Segment of a laterally unbounded crystal plate of thickness
2h, with laboratory coordinates 2 superimposed. For the thickness
modes considered, all fields vary only along the thickness ‘co-
ordinate ;.

The pertinent sets of equations which have to be solved
simultaneously are (see [47]): the stress equations of
motion, corresponding to Newton’s equations; the equa-
tions defining mechanical strain; the dlvergence relation
from Maxwell’s equations, in the absence of free charge;
the electric field-electric potential relations, in the quasi-
static approximation; and the linear piezoelectric con-
stitutive relations characterizing the medium [11].
Assuming field variations only along the direction of
propagation, z;, and a time factor exp (4jwt), henceforth
omltted these equations take the form

Tsis = —pawdu; (N
Dss=0 (2)
Tsj = csims™un,s + essjos (3)
D; = egsuy 3 — egs% 3 (4)

Here and elsewhere, a Latin index has the range 1,2,3.

Only the three stress components T%; are considered here

since only they govern the plate motion and take part in

the boundary conditions at the plate surfaces.
Substituting (4) into (2) gives

(5)

We treat the case of an exciting electric field in the
thickness direction which is produced by electrodes on the
plate surfaces, and is referred to as thickness excitation of
thickness modes (TETM). As a result, ¢ varies only
with 23, and integration of (5) yields

©,33 = (63k3/633s) Uk ,33.

¢ = (ems/es%)up + asws + bs;

(6)

the integration constants as and b; are determined by the
electrical boundary conditions imposed. Insertion of (6)
into (4) shows D; to be a spatial constant given by

D; = (7)
so that the longitudinal component of the electric displace-
ment is independent of ;.

—essSas
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The three stress components T; (23) in (1) and (3)
represent the force-density vector acting across a plane
normal to z;. We will designate this vector by t;(s).
Moreover, when (6) is substituted into (3) it is found that
T3; can be separated into two parts as

Ty=t=04L+1 (8)
where
I = et (9
and
T; = Cajualn,s- (10)
Here
sz = Csjus® + €ssilans/ess® (11)

are the ‘“piezoelectrically stiffened” elastic stiffnesses at
constant normal electric displacement and constant
tangential electric field. The vector I; is solely a conse-
quence of the particle motion, whereas #; is directly
produced by the electric field —a; in the x; direction.

Equation (10) is one of the equations of motion of the
particles, and when substituted into the other equation
of motion, (1), gives

C3usUn,3s + pwu; = 0 (12)

which shows that the components u; are coupled through
the elastic constants.

Equation set (12) may be solved by assuming the dis-
placement vector 4z (x3) to be of the form 8, exp (Z=jxas),
which will satisfy (12) provided

(Cajes — cdin)Br = 0 (13)

with
¢ = pw?/r2 (14)
To obtain a nontrivial solution to (13), the determinant
of the matrix multiplying 8; must vanish. The determinant
yields a cubie in ¢, which has three real, positive roots
c¢™, from which three real wavenumbers «, may be ob-
tained from (14) for a specified value of w. Each ¢™ also
determines a set of ratios among the components Bim
of the corresponding eigenvector. These components
may be taken to be real, and when the eigenvectors are
normalized to unity, the resulting By, are then the direction
cosines of the particle displacement for each of the three
plane-wave modes (m = 1,2,3). The three vectors B,
Bz, and Bi; are orthogonal, and are the normal coordinates
of the material. Using these as a basis [12], [5], we

define transformed force—density, displacement, and
piezoelectric coefficient components by
tw? = Brmt: (15a)
Un® = Brmlhs (15b)
en® = Bumess:- (15¢)
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Because the eigenvectors are orthonormal, the inverse
transformations have as coefficients Bus.

B. Network Representation of a Plate

When the separation expressed by (8) is made in the
transformed system, it is found that, for each mode m,
the particle displacement u,° and the vector 7,0 are
parallel. We may therefore write

L0 =

Von(2s) (16a)

| =

vmo = jwumo = (16b)

Here V,.(x3) and I,,(x3) describe the x; dependence of the
modal stress vector and particle velocity, respectively, and
A is a suitable area normal to the direction of propaga-
tion.

Substituting (16) into (1) and (10), it is found with the
help of (8), (13), and (15) that V,, and I,, satisfy

Vm,3 = _ijZmIm (173)
Ins = —J L V. (17b)
m3 = JKm Zm m

where
Zm = A(pct™)12,

Equations (17) are the Heaviside transmission-line
equations [137]. Thus V., and I,, may be thought of as the
voltage and current on a modal transmission line having
characteristic impedance Z, and wavenumber k,. With
this viewpoint, each plane-wave mode may be modeled
by a transmission line as in Fig. 2, with the understanding
that the actual stress vector 7.’ and particle velocity
ux" are to be recovered via (16). The positive senses of
V. and I, along the transmission lines are indicated in
Fig. 2.

We consider now the modeling of the potential (6)
and the stress vector #; of (9) by the equivalent circuit.
In order to show that the presence of these field quantities
is correctly accounted for by the equivalent circuit of
Fig. 2, we first derive expressions for the potential dif-
ference between the surfaces of the plate and the com-
ponents of , along the eigenvectors Bim.

The electrical potential between the surfaces of the
plate is given by the difference between ¢(+h) and
o(—h), where ¢ is given in (6). For convenience, we de-
fine the capacitance Cy and the dimensionless numbers
fim via the relations

Co = Aéggs/(2h>
N = Aend/ (2h).

(18)
(19)

Recognizing that the particle displacement u; (23) in (6)
can be written as a sum of the modal particle displace-
ments u,.°(2:), and with the help of (16b), (18), and (19),
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Fig. 2. Seven-port normal-mode equivalent circuit for the crystal
plate of Fig. 1, but without mechanical boundary networks and
loads.

it is found that

N
Lo(+h) — o(—h)] = 2has — %ijo

[In(+h) = In(=h) 1. (20)

The total force ATs;(=h) over the area A at the sur-
faces of the plate is seen from (8) to be the sum of Af;
and the sum of AL,°(=+h) for the three modes. In order
to include the force Af; into the network, we resolve it into
its components V, along the three orthogonal vectors
Bum. Thus from (9), (19), and (15¢)

Vm = Af/cﬁkm = nm(zha3) (21)

where the factor 2ha; has been displayed since it represents
the contribution to the potential between the plate sur-
faces from the uniform field along ;. Recalling from
(16a) that V,, measures the force Af,? along Bim, it is seen
that Vn,(2h) 4+ V. gives the total force along Bus at
the plate surfaces.

Equations (20) and (21) are modeled in the equivalent
circuit of Fig. 2 by the ideal transformers at the ends of
the transmission lines and the series capacitor of value
—Cy. The terminals ¢ — o represent the actual electrical
terminals for the electrodes on the surface of the plate.
The potential of node a above o' is given by [e(+hk) —
¢{—h)]. The voltage 2ha; is the potential of node b
above node b’. For ideal transformers, the dot convention
is used to indicate which terminal of the secondary has
positive (negative) voltage when the voltage at the dot
on the primary side is positive (negative). Also, if current
flows in (out) at the dot on the primary, it will flow out
(in) at the dot on the secondary.

The orientation of the dots on the ideal transformers
is such that the voltage 2ha; across the primaries reflects
itself so as to add the secondary voltage n.(2has) to the
voltage V.(4h) at either end of each transmission line.
Thus from (21) the voltage at the mechanical terminals

(1°)-(6°), and hence the component of ATs; along
Bim, Will be V., + Vo (=£h). In other words, the network
properly gives the stress at the surfaces of the plate.

The current on the lower wire of each transmission line
in Fig. 2 is in the opposite direction to that on the top
wire. Hence in view of the dot convention, the currents
I, and I_in Fig. 2 are seen to be

Io =3 npln(h). (22)
Since the current through the capacitor —Cy from node
a to b’ is [I_ — I.], the voltage Vi of b’ above d' is the
negative of the voltage drop across —Co, and hence

1
g (—Co)

Because nodes a and b are at the same potential, the
voltage [o(+h) — ¢(—h)] between nodes ¢ and o
is equal to Vi, plus the voltage 2has of node b above
b’. In view of (22), this statement is exactly that given in
(20). Thus the network properly models the voltage
relationship (20).

To complete the justification of the equivalent circuit,
it is necessary to show that the current I in Fig. 2 is the
one that actually oceurs at the electrodes on the plate
surfaces. In view of (7), the total current flowing into the
electrodes at a3 = A is equal to the displacement cur-
rent jwAes®as. From the network, it is seen that the
current [ is given by

I =juCle(+h) —e(=h)]1+ I — 1. (24)

With the help of (20) and (22), this current is found to
equal the total displacement current.

In summary, the network of Fig. 2 correctly represents
the transmission line (17), the piezoelectrically induced
stress (21) due to the uniform field, and the displacement
current —jwADs. These relations, together with the ap-
propriate definitions and the eigenvalue equation (13)
are equivalent to the dynamic equations (1)-(4) that
govern the plate motion. The network is therefore an
exact representation-of the plate motion and its coupling
to an applied voltage. Note that in Fig. 2, the voltage
and current at the mechanical ports (1°)-(6°) are equal to
the components of the force AT; and the negative
particle velocity —uv; along the orthonormal eigenvectors
Bim. In Section III, it is shown that a network of ideal
transformers will convert the components along the

eigenvectors to the components along the x; coordinates
of Fig. 1.

Vb’a’ = -

[I- - L] (23)

C. Impedance Matrix Representation

The motion of the plate, as viewed from its surfaces, may
also be described by a seven-port impedance matrix. In
Fig. 3(a) we enumerate the seven pairs of port variables
that completely describe the electromechanical behavior
of the plate in Fig. 1. These ports consist of the six com-
ponents of force ATs;(=£h) along the z; coordinates, three
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Fig. 3. (a) Seven-port electromechanical representation of a crystal
plate. Ports 1), 2), and 3) are the mechanical ports at the lower
plate surface 23 = —h. Ports 4), 5), and 6) are the mechanical
ports at the upper plate surface z; = —+h. Force and particle
velocity components are the mechanical port variables; the port
variables at the electrical port 7) are electrical voltage and cur-
rent. (b) Seven-port electromechanical impedance matrix for the
piezoelectric crystal plate of Fig. 1, expressed in normal co-
ordinates.

on the top of the plate and three on the bottom, and the
corresponding particle velocities »,. The seventh pair
corresponds to the purely electrical voltage and current
at the electrodes.

In order to represent the plate completely, the seven-
port impedance matrix [Z] for the box in Fig. 3(a) is
required. We can find [Z] most simply by first obtaining
the impedance matrix [Z°] that relates the port variables
expressed tn normal coordinates, as in Fig. 2. The overall
impedance [Z] wn laboratory coordinates is then found
from [Z°] by a similarity transformation. We show in
Section III that [Z] is realized simply by attaching
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additional circuitry to each set of mechanical ports of
the network of Fig. 2. '

For the realization of [Z°], we define the port voltages
to be

V.t = ATsi("‘h)Bim, T
V‘II'O = AT3i(+h)Bim7

m = 1,2,3

r=m+3 =456 (25

and V is the actual electrical voltage across the electrical
terminals. Port currents I,°, taken positive when flowing
into the seven-port, are defined as

I

It

- vi( —h)Bim)
+ vi(+h)ﬂzm’

fF=m=123

I tE=m+3=456 (26)

and I, = I is the actual electrical current, equal to
—ijDa.

The normal-coordinate impedance matrix elements
[Z%] have been derived from the network of Fig. 2 and
are shown in Fig. 3(b), where

Om = 2hkm. 27)

The matrix elements of [Z] are of four types, viz., driving-
point impedances, which are either electrical or mechan-
ical, and transfer impedances, which connect either two
mechanical ports or a mechanical port to the electrical
port. Apart from the mode index number, all the driving-
point mechanical impedances are of the same form. The
transfer mechanical impedances between the two ports
of the plate that have the same value of the mode index
number are also equal, as are the corresponding electro-
mechanical mutual impedances, so that Z,;" is symmetric.
Similar considerations apply to a formulation of the seven-
port in terms of admittances. The impedance matrix has,
however, the simpler form, because a number of matrix
elements are equal to zero.

ITT. EQuivALENT NETWORK FOR THE MECHANICAL
INTERFACE

A. The Mechanical Boundary N etwork

The matrix and network so far described refer to the
normal-coordinate system, which was introduced for the
purpose of uncoupling the motions of the plate so that
they could be represented by three modal transmission
lines. From the matrix of Fig. 3(b), the overall impedance
matrix [ Z] for the plate (with mechanical ports referred
the the laboratory coordinate system) is obtained as
follows. Defining the mechanical port voltages and
currents as the force components A7T5.(=4=h) and velocity
components =v,(==h), the port voltages and currents in
Fig. 3(a) are related to those in Fig. 2 by

V)\ = B)ar Vwo

In = BMEIEO (28)
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where
B)\u = 611(7'7.7 =123;A = 1)" +3;u= ]7.7 + 3)

B77 = 1 (29)

B)\7=B7)\=0 ()\?57)

The overall impedance matrix elements Z,, are then

found to be related to Z.:® by the similarity transformation
Zyi = BarZo*Bg,. (30)

The network representation of (30) requires a net-
work at each set of mechanical ports (@3 = =h) in Fig. 2,
as prescribed by the orthogonal transformation from the
normal-mode coordinates to the laboratory coordinates
of Fig. 1. A multiwinding, ideal transformer intercon-
nection that realizes this transformation is given by
Carlin and Giordano [14] and is shown in Fig. 4. In the
figure, the turns ratios B.. are the ith components of the
mth eigenvector in the laboratory coordinate frame. The
figure may be reversed, and the primaries labeled with the
normal coordinate variables; this is achieved by inter-
changing subseripts on the components of B:» for the
transformer turns ratios.

By attaching two networks of the form given in Fig. 4
to the network of Fig. 2, the combined circuit becomes
an exact characterization of the piezoelectric thickness-
mode plate subject to arbitrary boundary loadings. The
network of Fig. 2 cannot be used directly for this purpose
because the variables at each port are composed of a
combination of the actual mechanical boundary con-
ditions. For example, a single compressive stress acting
along z; upon both plate surfaces appears generally as
voltage sources impressed at all six mechanical ports.
For the practical case of two plates in welded contact, the
boundary conditions require that the stress and velocity
components of both plates be continuous. This makes
inevitable the introduction of a transformation network
between the equivalent circuits representing the two
plates, since each circuit is based upon the normal co-
ordinates proper to its own crystal plate, rather than
upon the more convenient laboratory coordinates ..

In particular instances, the orthogonal transformation
networksmay simplify or disappear entirely. This may come
about for two distinct reasons. First, the 8:» array may be
reduced in complexity as a result of the nature of the
crystal and/or the chosen direction of propagation.
Second, the boundary impedance seen by the plate
surface may bring about a simplification. We consider a
simplification of the network due to a special set of Bim
in the illustrative example of the stacked-crystal filter
given in Section IV.

The second type of simplification, due to the form of
the boundary impedance, may be illustrated by examining
the effect of placing a thin, but heavy, electrode film on
a plate surface. If the plating is characterized by a lumped
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Fig. 4. Ideal transformer realization of an orthogonal transforma~
tion: the mechanical boundary network. One of these networks is
attached to each side of the network of Fig. 2 to provide the
overall network realization of the crystal plate driven in thickness
modes. The Bi, are the direction cosines of the particle motion
for the modes (m).

mass m per unit area with its elastic properties neglected,
it appears in the equivalent circuit as a set of three in-
ductances, each of value mA, and each attached to one
of the x.-coordinate ports in Fig. 4. At the other ports
one then sees the same thing, viz., three inductances of
value mA. This comes about because the network of Fig.
4 subjects impedances to similarity transformations,
as may be seen from (28)-(30) by allowing the Greek
indices to range only over the values 1, 2, and 3. The
impedance matrix in question is simply a scalar times the
unit matrix so the impedance matrix is therefore un-
changed by the transformation. The mechanical trans-
formation network consequently can be omitted, and the
inductances placed directly at the normal-coordinate
ports of Fig. 2 that represent the surface in question.

B. The Traction-Free Single Plate

As the mass per unit area vanishes, the boundary be-
comes traction-free, and the inductances are replaced by
short ecircuits. The exact equivalent circuit realizing
this situation at both surfaces is shown in Fig. 5. The
input admittance, ¥;, (TETM), seen at port seven, can
be readily calculated, and it agrees identically with that
given analytically by Yamada and Niizeki [5]. Here the
three modal transmission lines are mechanically uncoupled
at the boundaries and the piezoelectric effect provides the
sole coupling mechanism.

One may use the symmetry of Fig. 5 to simplify the
pertinent network. Because of the transformer dot array,
the mechanical voltages produced at the ends of each
transmission line have the same polarity, and the mid-
points of the lines are nodes of mechanical current.
We may therefore bisect the network of three transmission
lines at their centers, thus obtaining six lines (each of
length k), which are open-circuited at the terminals pro-
duced by the bisections. The six lines consist of three
sets of identical twins, which are all connected in parallel
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Fig. 5. Equivalent network analog representation of a crystal
plate with both surfaces traction-free. The vanishing of the
stresses at the boundaries leads to the disappearance of the
mechanical boundary networks and to imposition of short cir-
cuits at the transmission-line ends.
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Fig. 6. Bisected version of Fig. 5. The exact equivalent network
for a traction-free plate driven by a thickness-directed field is
reduced here to its simplest form. The polar nature of the piezo
drive leads to excitation of only the antisymmetric modes having
vanishing particle displacement at the plate midplane.

through their piezo transformers. Each set of twin lines
can be further reduced to a single line, having twice the
characteristic admittance of the individual lines. Our
manipulations thus lead us to Fig. 6. Here the three
modal transmission lines have been connected via a
common-core transformer, so that the secondaries are in
parallel. Application of standard network techniques has
thus brought the circuit realization into a form where the
analysis may be made by inspection. Casting the plate
problem into network form therefore allows systematic
application of highly developed network procedures of
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analysis and leads to the possibility of an overall opti-
mization of the system performance. -

C. Stacking of Two Plates

When two crystal plates are to be brought into welded
contact, as shown in Fig. 7, the physical boundary con-
ditions require that the components of traction and
displacement be continuous in the laboratory coordinates.
The network of Fig. 4 attached to each side of the normal-
coordinate network of Fig. 2 produces these stress and
displacement components directly at the w;-coordinate
ports. In order to represent the welded contact of two
plates, it is only necessary to connect together the z;-
coordinate ports of the mechanical transformation net-
works that separately represent the two boundaries to be
mated, as shown in Fig. 8 This network may be simpli-
fied by suppressing the primary loops of the resulting
interconnection, thus obtaining the final network for the

X3

(Xa),

Fig. 7. Two-layer stack of crystal plates showing relative rotation
about the common z; axis. The illustrative example of Section IV
describes the response of a stack of two plates operated as a
filter, with input and output sharing the common electrode
located at the mterface.
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Fig. 8. Exact analog representation of mechanical interface
coupling between two crystals having arbitrary anisotropy.
Plane-wave propagation is normal to boundary, and piezoelec-
tric drive connections have been omitted for clarity. A thin,
massy electrode located at the interface would be represented by
insertion of an inductor in series in each of the central loops.
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Fig. 9. Mechanical interface network representing welded contact
between two crystals in the most general case of anisotropy. This
figure is obtained from that in Fig. 8, to which it is equivalent,
by suppressing the internal loops in the transformer intercon-
nection.

interface shown in Fig. 9. An additional superscript has
been added, where necessary, to distinguish between the
two crystals. Fig. 9 is the most general situation involving
welded mechanical coupling that may arise between two
planar crystal interfaces. All piezoelectric connections
have been removed from the figure for clarity. They may
readily be grafted on by inserting the piezoelectric drive
transformers, in series with each transmission line, in the
manner of Fig. 2. The piezoelectric transformer primaries
lead off to the electrical port connections of each plate.
The practical case of a negligibly thin electrode film shared
between the juxtaposed crystal plates at the interface is
simply represented by directly connecting the electrical
terminals that are adjacent at the boundary. The same
applies even if the electrode mass cannot be neglected,
except that the inductances that represent the mass are
placed in series in each of the primary loops of Fig. 8.

By utilizing the circuit of Fig. 2, augmented by bound-
ary networks to represent each crystal plate, and with
the interconnections described to represent satisfaction
of welded-interface boundary conditions, the generaliza-
tion to a stack of any number of plates follows immedi-
ately. In a multilayer stack, the electrodes of the individual
plates may be connected electrically in series, in parallel,
or arbitrarily grouped in a series-parallel combination,
as in the case with conventional stacks [157. ‘

A particularization of Fig. 9 that we will use in our
illustrative example in the next section is given in Fig. 10.
Here we show a welded contact between a general tri-
clinic substance on the right, and a material having
monoclinic symmetry on the left. Representing the tri-
clinic erystal is a mechanical interface network in its
most general form, as given in either half of the network
of Fig. 9. The left-hand side of the interface network of
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Fig. 10. Exact mechanical interface network specialized to the
situation of welded contact between a general triclinic crystal
and a crystal of monoclinic symmetry. Piezoelectric interconnec-
tions have been omigted for clarity; they may be added in a
simple manner, as described in Section ITI-C.

Fig. 10 may be identified, for example, with a rotated
Y-cut quartz plate [117]. The rotation destroys the class
32 symmetry, and makes the plate appear, with respect
to coordinate axes rotated around the original twofold
axis, as a crystal in class 2. We take our z; along the
twofold ecrystallographic axis and x; along the plate
thickness. Then mode (1) is a pure-shear mode, which is
the only mode that is piezoelectrically driven in TETM.

If the triclinic crystal is arbitrary, we have to attach
piezoelectric transformers to all transmission lines on the
right side of the figure. On the other hand, a rotated Y-cut
quartz crystal which has been further rotated about the
23 (thickness) axis with respect to the laboratory frame,
appears to be triclinic elastically, but only mode (1) may
be driven piezoelectrically in TETM.

The network of Fig. 10 thus represents the situation
where two rotated Y-cut quartz plates have been joined,
with the laboratory frame coinciding with the x; set of the
left erystal, and the @, axis of the right crystal at an angle
to the x; axis of the other.

IV. Two-LayEr STACKED-CRYSTAL FILTERS

A two-layer stack of erystal plates, with an electrode at
the Interface in addition to those at the free surfaces, can
be used as a filter element by utilizing the two electrical
ports as input and output, and arranging the plate thick-
nesses and orientation angles properly. We consider the
plates shown as in Fig. 7 to be in welded contact and to be
driven in TETM.

Each rotated Y-cut quartz crystal has the rotational
symbol (Y X1)6, the angle 9 describing the rotation about
the crystallographic X axis [117]. The values of 6, as well
as the rotation angle ¢ (about the thickness) of one crystal
with respect to the other may be independently chosen.
Therefore three angles are disposable for a two-layer
stack of singly rotated crystals. The relative rotation of
the plates about the common z; axis provides a means of
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investigating the effects of change in the mechanical-in-
terface transformer turns ratios.

In view of the three electrodes, the input and output
can be taken in a number of ways; we shall consider the
central electrode as common to both input and output.
Thus, for instance, the electrode placed on the top plate
could lead to the generator, the electrode at the lower
plate surface could bé connected to the detector, and the
central electrode could serve as a commnion ground. From
the results of previous sections it is apparent that even a
simple two-layer stack generally possesses six transmission
lines which are all coupled together mechanically and also
piezoelectrically. For the purposes of the example, we
introduce a number of simplifications so that the essential
behavior of this class of devices may be demonstrated
without an extended- discussion.

Because of the completeness with which its material
constants are known, and because it preserves so many
connections with currently used devices, we choose
quartz for the two media in Fig. 7. Specifically, both
plates individually are chosen to have the same crystal-
cut orientation, that of the AT-cut: (YX1)8, 0=4-35°15".
This choice has four major consequences. First, the be-
havior of single plates of this cut is universally known, so
that our filters can be contrasted with known results for
quartz filters of standard construction. Second, the
selection of the same cut makes the eigenvalues of both
plates equal, so that the critical frequencies of each plate
(taken separately) are in the same ratios. Third, the lower
shear mode is a pure mode, so that the interface network
is simplified. Finally, only the pure shear mode in each
plate is TETM-drivable, thus simplifying the piczo-
electric interconnections.

The overall circuit for this filter is shown in Fig. 11,
where the mechanical interface network is that of Fig. 10.
The outer surfaces of the plates are traction-free, so that
the transmission lines are terminated in short circuits.

Since both plates have the same orientation angle 4,
the corresponding transmission lines on each side of the
figure are identical. When the relative rotation angle y is
zero, the device becomes identical with a single plate of
quartz, except that a central electrode is present. The
mechanical network then degenerates into a set of three
direct feedthroughs. When ¢s0%, the network of Fig. 10
is appropriate and the modal matrix components 8%,
governing the transformer ratios on the right-hand side,
are then functions of ¢ if the z; axes of the crystal on the
left-hand side are chosen as the reference set.

In a specific numerical illustration, we take the plates
to be of equal thickness, which is such that w,/2x = 100
MHz, where w; is the angular frequency at which the
reference plate (taken alone) has its first admittance
null. The effect of making the plates of equal thickness is
to force the frequencies of both plates to be the same,
so that only three rather than six modes have to be con-
sidered. Having the overall impedance matrices for each
layer, as given in Section II, it is not difficult to obtain
the two-port impedance matrix between the electrical
ports of the two-layer stack. The top and bottom faces

o,y PRI ), =, Y3 P k't ),
T MECHANICAL >
[(zo) ke e emeace [ e =,
NETWORK
(F16 10)
wy Lk ey 0oy, w8 @ 0,
[ AAre
=" Ny oS - e ¢
| 1 | T
L~ Col ~Coz L
+Col +Co2
hY| AN
Al P4l
7 7
( )I ( )2
7
INPUT ouTRUT
Fig. 11. Complete network representation of the electrical two-port

formed by a two-layer stack of crystal plates in welded contact.
The outer plate surfaces are free of tractions, and one mode only
is taken to be piezoelectrically driven in each crystal. In the
general case the interface contact would be represented by the
network of Fig. 9; that of Fig. 10 is used for the illustrative
example of Section IV,

of the plates are traction-free, so that the transmission
lines representing the plates. are shorted there; the three
internal mechanical ports of each plate are connected
together, thus leaving only the electrical ports uncon-
nected. Matrix methods pertinent to the interconnection
of networks may be found in [167.2

Once the interconnected networks have been charac-
terized by a two-port impeddnce matrix Z;; the attenu-
ation may be determined provided the source and load
impedances are known. We assume for simplicity that these
are equal and purely real, namely

Zsource = Zload =R = 1/(60100) =509

where the capacitance Cy refers to the shunt capacitanée
of a single plate. Then using the equations found, e.g.,
in Zverev [2], the attenuation loss in decibels, is

L(dB) = 10logy {[Zn + Z»T + [(det Z) /R + RJ?}
el 20 10g1o i 2Z12 l

Using all of the preceding simplifying assumptions, we
are left with results that are easily described and ahalyzed.
The computer-generated output is plotted in Fig. 12,
where the normalized frequency Q@ = w/w; is used as the
abscissa. Curves are presented for the three angles ¢ = 0°,
4°, and 8°. When ¢ = 0°, the stack appears as an asym-
metrically driven single plate of thickness 44 and, because
of the lack of symmetry, the stack possesses resonances
at both odd and even integer values of Q. The only driven

2 See [14].
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Fig. 12. Attenuatmn versus. frequency for a two-layer stacked-
crystal filter -comprising 100-MHz AT-cut quartz plates in a
50-Q system. Frequency ‘is normalized. to- the lower shear mode.
The angle ¥ measures the relative rotation of the plates about a
common thickness axis. Poles of attenuation occur whenever one
of the short-circuited transmission-line ends from Fig. 11 is re-
flected to the interface to produce an uncoupling. Note the
log-log ordinate scale. )

mode is the lower shear mode, which is 4 purely trans-
verse mode. Hence this mode is completely uncoupled
from the others, so that any resoniances due to them do not
appear in the attenuatlon function. In both cases Where
¢ < 0°, the attenuation functlon has poles at.Q = 1.000,
1.142, and 2.105, corresponding to modal velocities v,
of 3.328, 3.800, and 7.007 X 10° m/s. An easy way to
- explain the presence of the poles of attenustion is to
recognize that whenever a transmission line becomes one
half-wavelength long, the short circuit ‘at the traction-
free boundary appears also across the other end of the
line and thus uncouples the two plates. .

- Although the poles are fixed, the. shape of the curves
may be chariged by varying ¢, so that one has a simple
means of obtaining different filter. responses. Our illustra-
tion thus indicates how devices based.on these principles
might operate and provides an example that is still quite
simple and readily interpreted. Even so, the resulting
curves. for ¢ = 4° and 8° already indicate ‘reasonable
wide-band filter responses in the region just below Q = 2;
no attempt has been made to optimize these responses n
any way. Removing the restriction of equal plate thick-
nesses will also permit narrow-band filters to be designed
as stacked-crystal filters.

- The possible filter responses available for even the
gimplest two-layer structure are very large. Even if the
plates are restricted to a single material, each plate cut is
specified by two angles in the general case, so with the
mutual rotation angle between the plates there are five
disposable parameters to which must also be added the
ratio of the plate thicknesses. A large area for investiga-
tion is available here. Extensions to structures composed
of more than two plates, and the use of different materials
for each of the plates further widen the possibilities of
these devices for frequency selection and control, and
signal processing.

V. CONCLUSION

In this paper, rlgorous network analogs have been ob-
tained for configurations of stacked plates excited piezo-
electrically. The realization and optimization of practical
devices based upon these ideas, however,; can best pro-
ceed by introducing a step which is intermediate between
a circuit and the physicil device it represents. This step
consists in utilizing the network to simulate the ideal
behavior of the device by using computer-alded circuit-
design. programs. In this way, changes can be made easﬂy
withiout having to resort to a breadboard model each
time the effect of some altération in structure or in
composition needs to be known. Since the netiworks
are exact representations of the physical model, they will
faithfilly reflect the behavior of the devices.

An 1llustrat1ve example is given that consists of com-

puter-simulated attenuation response curves of & new
type of two-layer, integrated, wide-band filter. In this
configuration, the frequency-selective device is cornposed
of two media wherein the three modes in each layer are
permitted to interact with each other via the mechanical
boundary conditions. Miitual shielding or packaging is
fiot required. The device is inherently robust because of
its integral construction, and also lends itself readily to
miniaturization. By utilizing two or more layers, integral,
stacked-crystal filters of this type could readily be made,
these being completely compatible with 1ntegrated—
circuit technology.
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Design of Unapodized Surface-Wave Transducers with
Spectral Weighting |

GRAHAM R. NUDD, senior MEMBER, 1EEE, MICHAEL WALDNER, MEMBER, IEEE, AND
R. L. ZIMMERMAN, MEMBER, IEEE

Abstract—The technique commonly employed to provide a wide~
band surface-wave transducer with a specific conversion loss as a
function of frequency uses the linear frequency-modulation (LFM)
(quadratic-phase) design. This provides the necessary dispersion,
and apodization is then employed to obtain the required conversion
loss. In some applications the apodization presents complications in
that the beam generated has nonuniform width, and diffraction and
phase-front problems can result. An alternate technique is described
that relies on varying the number of effective transducer elements
as a function of frequency to provide the conversion-loss variation.
As examples of this technique, a flat bandpass filter for 2 nonlinear
convolver and a: very large fractional-bandwidth transducer (with
spectral weighting to provide sidelobe control) for a memory appli~
cation are described. , o

I. InTRODUCTION

IN many applications of surface-wave acousties for signal
L processing it is necessary to control the insertion loss
as a function of frequency across the band of the filter [1].
The conventional technique for achieving this is to build
an array with a linear frequency-modulated (LFM) char-
acteristic providing the wide bandwidth and then to
apodize the elements within the array to provide the
spectral weighting [2]. The apodization can cause prob-
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‘Fig. 1. Schematic of surface-wave filter.

lems because of the nonuniform beamwidth it produces
and the variation in diffraction losses across the band.
An alternate technique which has found application in
a variety of devices and avoids apodization and its associ-
ated problems, but provides a controlled insertion loss as
a function of frequency, is described here. The technique
relies on varying the number of elements within the array
that are synchronous at any given frequency. By varying
the number of effective elements N ( f) as a function of
frequency f across the band, the insertion loss can be
controlled to provide the desired spectral characteristics.
This technique requires control of the finger positions to



